(+)-ARCTIGENIN, A LIGNAN FROM WIKSTROEMIA INDICA

HIDEYO SUZUKI, KUO-HSIUNG LEE,* MITSUMASA HARUNA,† TOSHIYUKI IIDA,† KAZUO ITO† and HUAN-CHANG HUANG‡

Department of Medicinal Chemistry, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27514, U.S.A.; †Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan; ‡School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan, Republic of China

(Revised received 9 November 1981)

Key Word Index-Wikstroemia indica; Thymelaeaceae; (+)-arctigenin; lignan; enantiomer.

Abstract—A new lignan, (+)-arctigenin has been isolated from the roots of *Wikstroemia indica* (Nan-Ling-Jao-Hua) and identified as 8(R) 8'(S)-4'-hydroxy-3, 4,3'-trimethoxylignan-olid (9, 9') on the basis of spectral evidence as well as a direct comparison with its enantiomer, (-)-arctigenin.

The whole plant of Wikstroemia indica; C. A. Mey (Nan-Ling-Jao-Hua) afforded four antitumor agents: tricin, kaempferol-3-O-β-D-glucopyranoside, (+)-nortrachelogenin and daphnoretin [1]. An examination of the extract of roots of this plants has led to the isolation of a new lignan, provisionally named (+)arctigenin (1), in addition to the foregoing four compounds. The isolation of 1 involved an initial extraction of the ground air-dried roots of W. indica with n-hexane followed by methanol. The methanolic extract was concentrated and partitioned between chloroform and water. The chloroform extract underwent CC on Si gel (Merck Si gel 60, 230-400 mesh, 3×15 cm). Purification of the eluates [ca 200 ml, CHCl₃-MeOH (20:1)] by prep. TLC [Analtech Si gel GF-254, 1000 μ m, CHCl₃-MeOH (10:1)] led to the isolation of 1 in 0.0005% yield as a yellow gum.

Compound 1, $[\alpha]_D^{23} + 28.05^\circ$ (EtOH; c 1.23) $C_{21}H_{24}O_6$, showed a M⁺ at m/z 372.1571 (base peak) in the mass spectrum. The ¹H NMR spectrum (250.132 MHz, CDCl₃, TMS) of 1 revealed the presence of three methoxyl groups at δ 3.81 (6H, s) and 3.85 (3H, s), and six aromatic protons at δ 6.47, 6.65 (1H each, d and J = 2.2 Hz each, H-2 or H-2'), 6.55, 6.62 (1 H each, dd and J = 2.2 and 9.4 Hz each, H-6 or H-6'), 6.75 and 6.83 (1H each, d and J = 9.4 Hz each, H-5 or H-5'). The mass spectrum of 1 displayed characteristic fragment ions [m/z] 137 (86%), 151 (64%), and 235 (5%, $[M-137]^+$) indicative of the presence of a 4-hydroxy-3-methoxybenzyl and a 3,4-dimethoxybenzyl group [1]. The co-occurrence of (-)-nortrachelogenin and (-)-arctigenin from

Trachelospermum asiaticum var. intermedium [2, 3], coupled with the isolation of (+)-nortrachelogenin, an 8(R), 8'(R)-4, 4', 8'-trihydroxy-3, 3'-dimethoxylignan-olid (9, 9'), from W. indica [1] suggested a trimethoxylignan-olide (9, 9') for compound 1. The presence of this lignan-olide (9, 9') skeleton [3] in 1 was further supported by its NMR signals at δ 3.88, 4.14 (1H each, m, H-9), 2.92 (2H, AB part of ABX, H-8 and H-8'), 2.40-2.70 (4H, m, H-7 and H-7'). The above evidence led to the consideration of 1 for the structure of arctigenin. A direct comparison of the TLC|| [Merck Si gel 60, GF-254 in three solvent systems: CHCl₃-Me₂CO (15:1), C_6H_6 -MEOH (5:1)

[8(R), 8'(S)]

2 [8(S),8'(R)]

||Identical TLC behaviour was also observed for the diazomethanemethylated products of 1 and (-)-arctigenin.

^{*}To whom correspondence should be addressed.

[§]Collected and identified by H. C. Huang. A voucher specimen is available for inspection at the Herbarium of the School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan.

Table 1. 13C NMR of 1*

Carbon no.	δ (multiplicity)	Carbon no.	δ (multiplicity)
C-1	130.79 (s)	C-1'	129.56 (s)
C-2	114.55 (d)	C-2'	112.28(d)
C-3	148.14(s)	C-3'	149.31 (s)
C-4	147.10(s)	C-4'	144.89(s)
C-5	111.82(d)	C-5'	112.02(d)
C-6	120.78(d)	C-6'	122.15 (d)
C-7 or 7'	34.63(t)	C-7' or 7	38.20(t)
C-8 or 8'	41.06(d)	C-8' or 8	46.72(d)
C-9	71.41(t)	C-9'	179.00(s)
3, 4, 3'-OMe	55.94(q)		` '

^{*}Carried out at 15.03 MHz in CDCl₃ (TMS). The ¹³C NMR analysis of the related lignans, such as pluviatolide, its acetate and hinokinin, have been reported previously [5].

and n-hexane-Me₂CO (1:1)] and the IR, ¹H NMR and mass spectral data of 1 with (-)-arctigenin [8(S), 8'(R)-4'-hydroxy-3, 4, 3'-trimethoxylignan-olid (9, 9')] (2) [2, 3] established the identity of both compounds. However, the opposite sign of both specific rotation and Cotton effects in circular dichroism of 1 compared to those of (-)-arctigenin (2), in which 1 showed $[\theta]_{270}^{270} + 24180$ and 2 had $[\theta]_{230}^{270} - 23250$, led to the assignment of the structure of 1 as the enantiomer of 2, i.e. (+)-arctigenin, beyond doubt. The ¹³C NMR spectral assignment, which was also in accord with the structure of 1, is listed in Table 1.

Acknowledgements—This investigation was supported in part by a grant from the National Cancer Institute (CA-17625) to K. H. L. We wish to thank Professor S. Nishibe of the Faculty of Pharmaceutical Science, Higashi Nippon Gakuen University for an authentic sample of (-)-arc-

tigenin; Dr D. L. Harris, Department of Chemistry, University of North Carolina at Chapel Hill for 250 MHz NMR spectra, and Mr Fred Williams of the Research Triangle Center for Mass Spectrometry for MS data.

REFERENCES

- Lee, K. H., Tagahara, K., Suzuki, H., Wu, R. Y., Haruna, M., Hall, I. H., Huang, H. C., Ito, K., Iida, T. and Lai, J. S. (1981) J. Nat. Prod., 44, 530.
- Nishibe, S., Hisada, S. and Inagaki, J. (1971) Chem. Pharm. Bull. 19, 866.
- Inagaki, I., Hisada, S. and Nishibe, S. (1972) Chem. Pharm. Bull. 20, 2710.
- Kato, A., Hashimoto, Y. and Kidokoro, M. (1979) J. Nat. Prod. 42, 159.
- Wenkert, E., Gottlieb, H. E., Gottlieb, O. R., Pereira, M. O. S. and Formiga, M. D. (1976) *Phytochemistry* 15, 1547 (and lit. cited therein).